数えるということの本質 (発達課題のある子の算数指導)

 2008-08-07
どんなお子さんにとっても、社会的自立に向けて、数えることは重要ですよね。

今日はこうした、お子さんの数えるというメカニズムにかかわるトピックです。

1・2・3・4・5・・・・・・・・と数えていって10になると一つの束になる・。

1円・2円・3円・・・と数えていって10個集まると、10円玉1個と同じになる。

これが位取りの原理です。私たち大人は、様々な学習や体験を通して、当たり前のような感覚で、このことをとらえることができていますが、小さい子、特に発達面で課題のあるお子さんにとっては、なかなか理解しにくい内容です。

私のこれまでの経験では、位だけを意識させるのだったら、数え棒が一番でした。 「10で1」ということが、一番視覚的にとらえやすいからです。

友里ちゃんのばあい、かけ算もわり算の筆算もできますが、この「10で1」という感覚は、まだ十分ではないようです。

継次的なとらえ方をするので、1・2・3・・10と1本ずつなら楽々数えられることでも、10・20・30・40・・・と束で数える事は苦手です。

束で10・20・30・・・・と数える位なら、ばらして1本ずつ1から100まで数えた方が楽なのです。そんな子もいるのです。

ですから私は、この継次的な数え方をベースに、様々な量的刺激をミックスしていきます。例えば、バラの20本と束の2つを用意して、双方とも数えさせます。そして束とバラをミックスした「25」を数えさせます。私の言う二系統同時刺激です。

すごろく・さいころ・おかし・お金・・・・

ありとあらゆる刺激を用意して、「10個になると1つのまとまり」 を意識させます。

毎回、毎回、意識してやってると、苦手ではあっても、必ずできるようになってきますから、それは楽しいです。

友里ちゃんの場合、教室でその日学習する内容が理解できないことがあると、行動面に大きく影響があるということを聞きました。

そこで今回、学校で習うより先に指導を行い、それが教室での行動改善にどこまでつながるか、トライしてみることになりました。

「みんなより先に少数習う!」 ということで、友里ちゃん、モチベーションはビンビンです。

学校の先生ならどなたもご存知だと思いますが、少数も「0.1」を一つの単位として考えれば、計算そのものは、整数と基本的には何も変わりません。

つまり、1年生の太郎君がやってることも、2年生の花子ちゃんがやってることも、4年生の友里ちゃんがやってることも、原理から見れば、そんなに変わりのないことなのです。

少数の場合、「0・1Lが10個で1L」 ここがミソです。 今日は、1Lのペットボトルに、0・1Lずつ水を入れて目盛りをつけ、10杯で1Lという算数的な活動に取り組みました。

これ、いいですね~ 数え棒にさらに強烈な、視覚的補助刺激になりました。

友里ちゃんの場合、量的なとらえは、4年の少数の教材の方が、1年生のおさらいをするより、さらにパワーアップして、数というもののとらえに、有効に機能している気がします。

指導していて、正直、手応えを感じています。

ここができれば、大きな数だって、少数だって、何だって、後は応用です。逆に言えば、ここができていなければ、なかなか使える理解には至らないということです。

ここをお子さんの認知特性に合わせて、どう教材化するか、ということが指導者の腕の見せ所ということになります。

ご家庭の宿題などに取り組まれるときに、少しでも参考にしていただければと、願っています。

FC2ブログランキング


↑どうかランキングも見てやってください。はげみになりますので,ご協力よろしくお願いします。
コメント
我が家の場合は 前にも書きましたが、遠山啓先生の「水道方式」で教えました。キャラメルのように包む~まではやりませんでしたが、小学校の事務室でお願いして 小1の「算数セット」を2つ購入して 四角いマグネットが無くなっても「怒らなくてすむように」考えました。もちろん、このセットの中には「数え棒」も入っていますが、「5までのかたまり」「5と5のかたまりで10」という方式で教えました=学校の先生と教え方を統一していました。

ずいぶんと古い本ですが「さんすうの教え方」という遠山啓先生の本を1年~6年分と問題集を買い込み、これも参考にして どんな風に教えたらいいかな~と打ち合わせをしたのが懐かしい記憶です。
(現在は書店にあるかどうか不明ですが・・・)

「順番数を言えるので、うちの子は算数がわかっている」という話はよく聞きますが、順番数と 質量の数は違うので・・・数字の2が 物が2つで2 とうことはわからない~というケースは特殊学級では多かったと記憶しています。物がかわっても 1は1=これは物をかなりかえて練習して、迷いがなくなってから次に課題をかえたのも懐かしい記憶です。

今日は、かなり難しい(学校では出題されない)2次方程式にかなり苦しんで長時間、課題と向き合っていた息子と・・・
「これだけ解ければ大丈夫・・」と思っていたら 案の定「あり得ない間違いの連発」と「何でわざわざ そう考えた上で間違うかな~~」といういらつきで とうとう私が爆発! 炎上しました・・・よそのお子さんだと爆発しないんだけど・・・自分の息子は難しい・・・痛感しながらも・・・プリントをみながら 間違いの「つぼ」さがし・・・。

明日は ほめられる自分にもどらなければ・・・と思いつつ・・・やさしいママでいられるかどうか・・・不安です(大汗)

小学校の頃のこと=あんなに苦労したと思っていたことも~ふりかえってみると・・いまでは楽しい思い出になっています。
【2008/08/08 02:11】 | マドンナ #CFnWuolQ | [edit]
教材ですが、いまでは ネットでばら売りをしている所もあるそうですよ♪
【2008/08/08 02:12】 | マドンナ #CFnWuolQ | [edit]
マドンナさん、いつもありがとうございます。

まさに、リアルで貴重な臨床事例ですよね。このブログの宝物がどんどん増えていくようです。本当に、ありがたく思っています。

私は、小学校の教員でいたから、そのとらえのほとんどは、学習指導要領、もっといえば啓林館の教科書編集の方針が、ベースになっています。

フリーの立場から学習支援を行うようになってからは、まずはその子のわかり方を理解して、次に短期の目標を設定し、教材作りを行っています。

その指導の方法・テクニックについても、これまで知っていた方法以外に、いろいろな指導法があり、それぞれに理論があり・体系があることを知りました。

今は、とにかく目の前の子の理解にどう生かすか、ということが最優先なので、たくさんの事例や指導法に目を通しながら、心にすとんと落ちた、イケル方法を自分なりにアレンジしています。

誰の、どこを、どうアレンジしたか、答えることはできます。

認知特性・発達特性はいろいろ違うので、その子にあった方法ということが一番大切なんだと思います。

マドンナさんのように、そこを理解された上で、我が子には「水道方式」と、軸をぶらさないで積み上げていくことは、とても有効な方法だと思います。

要は、認知や発達の特性と、その特性に合った効果的な指導法とのマッチングができるかどうか、ということです。

簡単に書きましたが、大切なことです。

算数セットは、私も愛用品です。学校の先生をしていたころには、職員室の隅に無料の見本がいくらでもころがっていましたが、今は、結構苦労して購入しました。

しかし、現物(例えばジュースとかおかし)はすごいですね。

まあ、これも使い分けないと、何の勉強かわからなくなってしまいます(笑)
【2008/08/08 05:57】 | SHINOBU #- | [edit]












管理者にだけ表示を許可する
トラックバック
トラックバックURL:
http://shinobu1.blog117.fc2.com/tb.php/218-5b5d068d
≪ トップページへこのページの先頭へ  ≫
Author:SHINOBU
新大阪教室

bnr_personal-osaka.jpg

今までにご覧いただいた方
 

百万アクセスまでがんばりたい

カテゴリ
最近の記事
月別アーカイブ